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ABSTRACT

A biphenyl-fused BODIPY was synthesized through a facile oxidative cyclization of peripheral aryl-substituents at the β-position of the BODIPY
unit. The extended π-system of the fused BODIPY induces near-infrared (NIR) absorption and strong π�π interactions in the solid state. These
features are beneficial for the application of the dye as a functional material. The biphenyl-fused BODIPY dye was demonstrated to exhibit
photocurrent conversion ability on the basis of its n-type semiconducting property.

Boron dipyrrins (BODIPYs) are currently attracting
much interest in a wide variety of research areas such as
labeling reagents, fluorescent switches, chemosensors, non-
linear optical materials, and photovoltaics owing to their
advantageous photophysical properties such as photo-
stability, large extinction coefficients, and high lumines-
cence efficiency.1 The parent BODIPY dye (Scheme 1)
shows absorption and emission around 500 nm. The addi-
tion of near-infrared (NIR) absorbing/emitting property

to the BODIPY dye makes BODIPYs more useful materi-
als in applications to solar cells as well as biolabeling.

Hence, various methods to access NIR BODIPY dyes
have been developed, including extension of π-conjugation,
introduction of intramolecular charge transfer (ICT) char-

acter,2,3 and incorporation of a nitrogen atom in the

skeleton.4 To extend π-conjugation, introduction of

π-conjugated fragments such as ethynyl and vinyl groups

or fusion ofBODIPYswith aryl groups are often employed.

Scheme 1. General Structure and Numbering of meso-Substi-
tuted BODIPYs
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In particular, aryl-fused BODIPY dyes possess high rigid-
ity in their structures. High rigidity of π-systems leads to a
high fluorescence quantum yield in solution as well as
strong intermolecular π�π interactions in the solid state,
which are beneficial for applications as π-functional ma-
terials. The conventional method for synthesis of aryl-
fused BODIPY dyes is a condensation�oxidation seque-
nce starting with π-extended fused pyrroles such as furo-
pyrrole.3a�c In contrast, the oxidative fusion strategy of
BODIPYs with peripheral aryl moieties is considered to
be a straightforward alternative route. However, such
examples are limited to the recent work by Wu et al.,
who reported synthesis of perylene- and porphyrin-fused
BODIPYs throughanoxidative fusion reactionwithmeso-
substituents.3d,e Along this line, we decided to develop
a novel strategy for synthesis of aryl-fused BODIPYs
through an oxidative cyclization of β-aryl groups. Here,
we report the synthetic procedure as well as application of a
biphenyl-fused BODIPY dye as an n-type semiconducting
material.
Scheme 2 shows the synthetic route and condition for

a biphenyl-fused BODIPY. Suzuki�Miyaura coupling
of 2,6-dibromo BODIPY 2

5 with 2-biphenylboronic
acid afforded biphenyl BODIPY 3 in 82% yield. Ox-
idative cyclization of biphenyl BODIPY 3 by PIFA�
BF3 3OEt2

6 at �78 �C proceeded smoothly to furnish
biphenyl-fused BODIPY 4 as a sole product in 65%
yield.
Figure 1a,b shows the absorption and emission spectra

of fused BODIPY 4 in CH2Cl2, which exhibit substantial
red-shifts in comparison to biphenyl BODIPY 3 due
to a decrease in the HOMO�LUMO gap (vide infra).
BODIPY 4 showed an intense absorption band at 673 nm
with rather high absorption coefficients (ε(λmax) = 1.4 �
105 M�1 cm�1) (Table 1). The fluorescence quantum yield
of 4 is high enough, despite the rather small HOMO�LU-
MO gap (Φ = 0.51). The lower fluorescence quantum
yield of 3 could be due to partial charge transfer character
of 3 (Supporting Information).

Single crystal X-ray diffraction analysis revealed the
molecular structure of 4 (Figure 2). BODIPY 4 exhibited
π-interactions throughperipheral fused-biphenylmoieties,
in which the interplanar distance is 3.48 Å. Interestingly,
the BODIPY units adopt a 1-D infinite stack (Figure 2c),
which is known tobe favorable for organic semiconductors.7

The intermolecularπ�π interactions in the solid state were
further confirmed by the UV�vis absorption spectrum in

Scheme 2. Synthesis of a Biphenyl-Fused BODIPYa

aAr = 2,4,6-trimethylphenyl, PIFA = [Bis(trifluoroacetoxy)iodo]-
benzene.

Figure 1. (a) UV�vis absorption spectra of 1 (R = 2,4,6-
trimethylphenyl; black), 3 (red), and 4 (blue). (b) Fluorescence
spectra of 1 (black), 3 (red), and 4 (blue)measured inCH2Cl2. (c)
UV�vis absorption spectrum of thin film state of 4.
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the solid state. As shown in Figure 1c, the UV�vis absorp-
tion spectrum of compound 3 in thin film exhibited a
substantial red shift in comparison to that in solution
(Δλ=34nm).No emissionwas observed in the solid state.

Electrochemical properties of BODIPY 3 and 4 were
examined by cyclic voltammometry (Table 2). In the case
of 3, a quasi-reversible oxidationwave and reversible reduc-
tion wave were observed at 0.89 and�1.34 V, respectively.
In the case of 4, reversible oxidation and reduction waves
wereobservedat 0.80and�1.05V, respectively (vsFc/Fcþ).
Remarkably, reduction of 4 occurred at rather positive
potential. Consequently, expansion of π-conjugation and
the electron-withdrawing boron atom significantly low-
ered the LUMO level (�3.75 eV) of 4,8 which is almost
equal to representative n-type semiconducting materials
such as perylene bisimides and fullerenes.

Because an application of a BODIPY skeleton as n-type
semiconducting materials has not been reported so far,
except for BODIPY-polymers,9,10the n-type semiconduct-
ing property was examined. To evaluate the intrinsic
charge-carrier mobility, we measured the flash-photolysis

time-resolved microwave conductivity (FP-TRMC) of the
polycrystalline film of 4.11 The TRMC measurement of
transient photoconductivity confirms that 4 has actually
good carrier mobility (a minimum mobility; μmin = 9 �
10�3 cm�1 V�1 s�1) determined by the maximum yield of
photogenerated charge carriers upon excitation at 355 nm
derived from transient photocurrent traces.

To clarify whether BODIPY 4 can be used as an n-type
semiconducting material for a device application, a p�n
heterojunction solar cell was fabricated.12,13 Tetrabenzo-
porphyrin (BP) was employed as an electron donor.14 The
current density�voltage (J�V) characteristics under
AM 1.5G simulated solar illumination at an intensity of
100 mW/cm2 and corresponding external quantum effi-
ciency (EQE) spectrum are shown in Figure 3. The device
actually showed a performance with an open-circuit vol-
tage (Voc) of 0.51 V, a shot-circuit current density (Jsc) of

Table 1. Summary of Optical Properties of BODIPYs in
Solution

compound λmax (nm) ε (M�1 cm�1) λem (nm) Φf

1 501 6.3 � 104 514 0.92a

2 538 5.8 � 104 577 0.14a

3 573 4.8 � 104 616 0.58

4 673 1.4 � 105 692 0.51

aValues taken from ref 5.

Table 2. Summary of Electrochemical Properties of BODIPYsa

compound E1/2
red1/V E1/2

ox1/V LUMO level/eVb

3 �1.34 0.89 �3.46

4 �1.05 0.80 �3.75

aMeasurements were performed in CH2Cl2 solution containing
TBAPF6 (0.1 M) as a supporting electrolyte with a scan rate of
100 mV/s. Platinum, platinum wire, and Ag/AgClO4 electrodes were
used as working, counter, and reference electrodes, respectively. bValues
from the vacuum level were estimatedby the following equation:LUMO
level = �(4.8 þ E1/2

red) eV

Figure 2. X-ray crystal structure of 4. (a) Top view of 4, (b) side
view of 4, and (c) packing structure of 4. The thermal ellipsoids
were scaled to the 50%probability level.meso-Aryl substituents
were omitted for clarity except (c).
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2.9 mA/cm2, and a fill factor (FF) of 0.35. The power
conversion efficiency (PCE) of 0.52% was obtained. This
means that biphenyl-fused BODIPY 4 can act as an n-type
semiconducting material as expected from the packing
structure as well as low LUMO level.

To understand the carrier mobility, frontier orbitals of
4were calculated at theB3LYP/6-31G(d) level by theDFT
method (Figure 4). Both HOMOand LUMOof 4 are well
delocalized on the fused biphenylmoiety, offering effective
orbital interactions between the stacked π-systems. We
also evaluated transfer integrals of HOMO and LUMO
(tHOMO and tLUMO) on the basis of the crystal struc-
ture of 4 by is the Amsterdam Density Functional
(ADF) programpackage (PW91/DZP level of theory).15,16

The calculated tHOMO (54.7 meV) and tLUMO (68.8
meV) are substantially large in the 1-D infinite stack to
support high carrier mobility of BODIPY 4. On the basis of
these analyses, fused BODIPY 4 would also act as a hole-
transporting material.
In summary, we have developed a novel synthetic

procedure for a biphenyl-fused BODIPY through Su-
zuki�Miyaura coupling�oxidative cyclization se-
quence. The biphenyl-fused BODIPY has a low
LUMO level and exhibits strong π�π interactions in
the solid state. These features allow the use of the
biphenyl-fused BODIPY as an n-type organic photo-
voltaic (OPV) material. Synthesis of aryl-fused BODI-
PYs toward further applications in materials science is
currently underway.
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Figure 3. J�V curves for the device; glass/ITO/PEDOT:PSS/
BP/BODIPY 4/NBphen/Al. Photocurrent is measured under
AM1.5G illumination (100 mW/cm2, 1 sun). Inset: External
quantum efficiency (EQE) as function of wavelength of theOPV
device.

Figure 4. (a) HOMO and (b) LUMO of 4 calculated at the
B3LYP/6-31G(d) level.
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